Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating.
نویسندگان
چکیده
We report that the length and surface properties of TiO(2) nanowires can have a dramatic effect on their photoelectrochemical properties. To study the length dependence, rutile TiO(2) nanowires (0.28-1.8 μm) were grown on FTO substrates with different reaction times (50-180 min) using a hydrothermal method. Nanowires show an increase in photocurrent with length, and a maximum photocurrent of 0.73 mA/cm(2) was measured (1.5 V vs RHE) for 1.8 μm long nanowires under AM 1.5G simulated sunlight illumination. While the incident photon to current conversion efficiency (IPCE) increases linearly with photon absorptance (1-10(-α×length)) with near band gap illumination (λ = 410 nm), it decreases severely at shorter wavelengths of light for longer nanowires due to poor electron mobility. Atomic layer deposition (ALD) was used to deposit an epitaxial rutile TiO(2) shell on nanowire electrodes which enhanced the photocatalytic activity by 1.5 times (1.5 V vs RHE) with 1.8 μm long nanowires, reaching a current density of 1.1 mA/cm(2) (61% of the maximum photocurrent for rutile TiO(2)). Additionally, by fixing the epitaxial rutile shell thickness and studying photoelectrochemical (PEC) properties of different nanowire lengths (0.28-1.8 μm), we found that the enhancement of current increases with length. These results demonstrate that ALD coating improves the charge collection efficiency from TiO(2) nanowires due to the passivation of surface states and an increase in surface area. Therefore, we propose that epitaxial coating on materials is a viable approach to improving their energy conversion efficiency.
منابع مشابه
Photoelectrochemical Performance of Quantum dot-Sensitized TiO2 Nanotube Arrays: a Study of Surface Modification by Atomic Layer Deposition Coating
Although CdS and PbS quantum dot-sensitized TiO2 nanotube arrays (TNTAs/QDs) show photocatalytic activity in the visible-light region, the low internal quantum efficiency and the slow interfacial hole transfer rate limit their applications. This work modified the surface of the TNTAs/QDs photoelectrodes with metal-oxide overlayers by atomic layer deposition (ALD), such as coating Al2O3, TiO2, a...
متن کاملEnhanced Photoelectrochemical Activity of ZnO-Coated TiO2 Nanotubes and Its Dependence on ZnO Coating Thickness
One-dimensional heterogeneous nanostructures in the form of ZnO-coated TiO2 nanotubes (ZnO/TiO2 NTs) were fabricated by atomic layer deposition of an ultrathin ZnO coating on electrochemical anodization-formed TiO2 nanotubes (NTs) with the thickness of ZnO coating being precisely controlled at atomic scale, and the photoelectrochemical activity of the fabricated ZnO/TiO2 NTs and the influence o...
متن کاملEnhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells
Zinc oxide nanowire photoanodes are chemically stabilized by conformal growth of an ultrathin shell of titania through atomic layer deposition, permitting their stable operation for water splitting in a strongly alkaline solution. Because of the passivation of zinc oxide surface charge traps by titania coating, core/shell nanowire arrays supply a photocurrent density of 0.5 mA/cm under simulate...
متن کاملAAO-assisted synthesis of highly ordered, large-scale TiO2 nanowire arrays via sputtering and atomic layer deposition
Highly ordered nanoporous anodic aluminum oxide (AAO) thin films were fabricated in oxalic acid under a constant voltage via a two-step anodization process. To investigate the high-aspect-ratio (7.5:1) filling process, both sputtering and atomic layer deposition (ALD) were used to form TiO2 nanowires. Field emission scanning electron microscopy and high-resolution transmission electron microsco...
متن کاملEnhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films.
TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent density were synthesized by atomic layer deposition (ALD) of TiO2 onto a porous, transparent, and conductive fluorine-doped tin ox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2012